Lab Canada
News

Polanyi Award goes to chemistry professor for green technology developments


Ottawa, ON – This year’s John C Polanyi Award has been given to Queen’s University chemistry professor Philip Jessop.

The award recognizes a recent outstanding advance in the natural sciences or engineering.

Dr Jessop and his research team have developed a new way to separate and re-use solvents commonly used in industrial processes such as refining oil or manufacturing pharmaceuticals. The revolutionary process makes it possible to “switch” the solvent’s properties on or off as needed. Separating solvents from the final manufactured product is currently a costly, waste-intensive process.

As an added bonus, the process uses waste carbon dioxide as a trigger. In May, Dr Jessop’s work was named by the Canadian Institute of Chemistry as one of the Top 20 Canadian discoveries in the past century.

“The most incredible thing about Dr. Jessop’s revolutionary process is that the key to its success is a substance that’s plentiful, non-toxic, and best of all, free,” says Dr Suzanne Fortier, president of the Natural Sciences and Engineering Research Council of Canada (NSERC), which gives the award. “This discovery shows how investing in people and innovation can bring tangible solutions to pressing problems facing Canada and the world.”

Dr Jessop looks for practical uses for carbon dioxide (CO2), available in large quantities at little or no cost as more industries seek to capture and store this greenhouse gas. He has discovered a simple chemical process that not only puts CO2 to work, but could vastly reduce the use of various solvents and other chemicals that are an essential part of many manufacturing and refining processes.

Many industrial processes require costly chemicals to be removed at each step of the process, consuming energy and time, while leaving behind a lot of waste, much of it toxic. Pharmaceuticals and fine chemicals are the worst offenders, generating anywhere from 50 kg to a staggering 16,000 kg of waste for each kilogram of final product.

New processes developed by Dr Jessop and his research team have developed the ability to “switch” certain properties on and off at will, something he first achieved with solvents in 2005 and has since applied to other chemicals.

The process is deceptively simple. In manufacturing soybean oil, for example, a switchable solvent would extract oil from the beans. After filtering out the solids from the oil/solvent solution, the solvent would be switched off, loosening its hold on the oil, which could then be easily separated in preparation for the next step in refining.

As an added bonus, the trigger for Dr Jessop’s process is provided by CO2. After the solvent and product are separated, the solvent is switched back on simply by exposing it to nitrogen, argon or even plain air, making it ready to be used again in the next batch.

Dr Jessop says he had considered other ways to make solvents switch, but all involved adding large quantities of other chemicals. “All these things would probably work, but you’d be building up so much junk that you’re defeating the purpose,” he observes. “We figured the only way to get this to work and not kill the environment in the process would be to have the trigger be something incredibly cheap and benign.”

In order to perform a chemical feat that his peers have called “brilliant” and “elegant,” one of Dr Jessop’s biggest challenges involved overcoming a mental block: a conviction firmly entrenched in the scientific community that solvents simply do not change their properties. “I was taking an assumption that we all had and saying: ‘Wait a minute – I don’t think I believe that any more.’ We’ve all got those assumptions in our heads, and the fact that we believe them is our biggest liability. In order to get something new, you have to take one of those assumptions and reject it.”

As a champion of green chemistry, Dr Jessop is used to challenging assumptions. Since becoming a convert while working with Nobel Prize winner Ryoji Noyori in Japan during the mid-1990s, he has seen the focus of environmental protection move from cleaning up pollution to preventing it from being generated in the first place. “People were assuming that the pollution was a necessary part of economic activity,” he says. “That’s not good enough.”

The next steps in his research include further exploration of areas where switchable chemicals could be beneficial, and scaling up his methods in order to apply them on an industrial scale. The initial focus of commercialization will be on areas where introducing the new process should be the easiest, such as oil refining, plastics and agriculture.