Lab Canada
News

Accidental discovery may lead to better polymers


Toronto, ON – An accidental discovery by U of T chemical engineering professor Tim Bender and post-doctoral fellow Benoit Lessard could result in a new way of manufacturing products ranging from sealants and adhesives to toys and medical implants.

The team discovered an unexpected side product of polymer synthesis that could have implications for the manufacture of commercial polymers:

“People in polymer synthesis would be very interested in the process described in our paper, as we document the discovery of a side-product. This side-product is quite unexpected based on our current knowledge of polymer chemistry,” said Bender.

The researchers discuss their discovery in a paper published this month in Macromolecular Rapid Communications and online at MaterialsViews.com. They describe a synthesis of boron subphthalocyanines (BsubPcs) containing polymers that can be used in organic electronic devices.

What makes the article significant is that it also describes their discovery of a new side product of a common polymer synthesis technique, which would not have been observed without the addition of the BsubPc to this standard polymer.

“Currently BsubPc polymers do not have any commercial applications. However, by studying their properties and finding new and inexpensive ways to synthesize them, we are able to open the door for potential applications in the field of organic electronics,” said Lessard.

Commercial polymers may also contain this particular side product, they write in the article. If the side product can be reduced or eliminated, more of the polymer could be produced with more consistent quality.

They are also investigating the optical and electrical properties of BsubPc polymers for possible use in organic electronic devices, such as organic field-effect transistors, organic light emitting diodes and organic photovoltaics. Applying polymers in organic electronics may lead to more flexibility, lighter weight and lower manufacturing costs, they wrote.

Reported by Terry Lavender, University of Toronto